Tuesday 9 May 2017

Exponential Moving Average Volatilität

EWMA 101 Der EWMA-Ansatz hat ein attraktives Merkmal: Er benötigt relativ wenig gespeicherte Daten. Um unsere Schätzung an jedem Punkt zu aktualisieren, benötigen wir nur eine vorherige Schätzung der Varianzrate und des jüngsten Beobachtungswertes. Ein weiteres Ziel der EWMA ist es, Veränderungen in der Volatilität nachzuvollziehen. Für kleine Werte beeinflussen jüngste Beobachtungen die Schätzung zeitnah. Für Werte, die näher an einem liegen, ändert sich die Schätzung langsam auf der Grundlage der jüngsten Änderungen in den Renditen der zugrundeliegenden Variablen. Die von JP Morgan erstellte und öffentlich zugängliche RiskMetrics-Datenbank nutzt die EWMA zur Aktualisierung der täglichen Volatilität. WICHTIG: Die EWMA-Formel geht nicht von einem lang anhaltenden durchschnittlichen Varianzniveau aus. So bedeutet das Konzept der Volatilität Reversion nicht von der EWMA erfasst. Die ARCH / GARCH Modelle sind dafür besser geeignet. Lambda Ein sekundäres Ziel von EWMA ist es, Veränderungen in der Volatilität nachzuvollziehen, so dass für kleine Werte die jüngsten Beobachtungen die Schätzung sofort beeinflussen, und für Werte, die näher bei einem sind, ändert sich die Schätzung langsam auf die jüngsten Änderungen in den Renditen der zugrundeliegenden Variablen. Die RiskMetrics-Datenbank (erstellt von JP Morgan), die 1994 veröffentlicht wurde, verwendet das EWMA-Modell zur Aktualisierung der täglichen Volatilitätsschätzung. Das Unternehmen festgestellt, dass über eine Reihe von Marktvariablen, gibt dieser Wert der Prognose der Varianz, die am nächsten zu realisierten Varianz Rate kommen. Die realisierten Varianzraten an einem bestimmten Tag wurden als gleichgewichteter Durchschnitt der folgenden 25 Tage berechnet. Um den optimalen Wert von lambda für unseren Datensatz zu berechnen, müssen wir die realisierte Volatilität an jedem Punkt berechnen. Es gibt mehrere Methoden, so wählen Sie ein. Als nächstes wird die Summe der quadratischen Fehler (SSE) zwischen der EWMA-Schätzung und der realisierten Volatilität berechnet. Schließlich minimieren die SSE durch Variieren des Lambdawertes. Klingt einfach Es ist. Die größte Herausforderung besteht darin, einen Algorithmus zur Berechnung der realisierten Volatilität zu vereinbaren. Zum Beispiel wählten die Leute bei RiskMetrics die folgenden 25 Tage, um die realisierte Varianzrate zu berechnen. In Ihrem Fall können Sie einen Algorithmus wählen, der Tägliche Volumen-, HI / LO - und / oder OPEN-CLOSE Preise nutzt. FAQ Q 1: Können wir EWMA nutzen, um die Volatilität mehr als einen Schritt voraus zu schätzen (oder prognostizieren) Die EWMA-Volatilitätsdarstellung setzt keine langfristige Durchschnittsvolatilität voraus, so dass die EWMA für jeden Prognosehorizont über einen Schritt hinaus a Konstante Wert: Exploration der exponentiell gewichteten Moving Average Volatilität ist die häufigste Maßnahme des Risikos, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, lesen Sie unter Verwenden der Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächlichen Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, seine wirklich nur ein Durchschnitt der quadrierten periodischen kehrt zurück. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also Alpha (a) ein Gewichtungsfaktor (speziell eine 1 / m) ist, dann sieht eine einfache Varianz so aus: Die EWMA verbessert die einfache Varianz Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Yesterdays (sehr jüngste) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre tägliche Aktienkursdaten, das sind 509 tägliche Renditen und 1/509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit verringern, so dass eine einfache Varianz künstlich hoch sein könnte. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkende Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet durch Lambda) plus der gestern zurückgelegten Rückkehr (gewogen von einem minus Lambda). Beachten Sie, wie wir sind nur das Hinzufügen von zwei Begriffe zusammen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Renditen. (Um eine Film-Tutorial zu diesem Thema, besuchen Sie die Bionic Turtle.) Exponential Moving Average - EMA Laden des Spielers. BREAKING DOWN Exponential Moving Average - EMA Die 12- und 26-Tage-EMAs sind die beliebtesten Kurzzeitmittelwerte und werden verwendet, um Indikatoren wie die gleitende durchschnittliche Konvergenzdivergenz (MACD) und den prozentualen Preisoszillator (PPO) zu erzeugen. Im Allgemeinen werden die 50- und 200-Tage-EMAs als Signale von langfristigen Trends verwendet. Trader, die technische Analyse verwenden finden fließende Mittelwerte sehr nützlich und aufschlussreich, wenn sie richtig angewendet werden, aber Chaos verursachen, wenn sie falsch verwendet werden oder falsch interpretiert werden. Alle gleitenden Mittelwerte, die gewöhnlich in der technischen Analyse verwendet werden, sind von Natur aus nacheilende Indikatoren. Folglich sollten die Schlussfolgerungen aus der Anwendung eines gleitenden Durchschnitts auf ein bestimmtes Marktdiagramm eine Marktbewegung bestätigen oder ihre Stärke belegen. Sehr oft, bis eine gleitende durchschnittliche Indikatorlinie eine Änderung vorgenommen hat, um eine bedeutende Bewegung auf dem Markt zu reflektieren, ist der optimale Punkt des Markteintritts bereits vergangen. Eine EMA dient dazu, dieses Dilemma zu einem gewissen Grad zu lindern. Da die EMA-Berechnung mehr Gewicht auf die neuesten Daten setzt, umgibt sie die Preisaktion etwas fester und reagiert damit schneller. Dies ist wünschenswert, wenn ein EMA verwendet wird, um ein Handelseintragungssignal abzuleiten. Interpretation der EMA Wie alle gleitenden Durchschnittsindikatoren sind sie für Trendmärkte viel besser geeignet. Wenn der Markt in einem starken und anhaltenden Aufwärtstrend ist. Zeigt die EMA-Indikatorlinie auch einen Aufwärtstrend und umgekehrt einen Abwärtstrend. Ein wachsamer Händler achtet nicht nur auf die Richtung der EMA-Linie, sondern auch auf das Verhältnis der Änderungsgeschwindigkeit von einem Balken zum nächsten. Wenn zum Beispiel die Preisaktion eines starken Aufwärtstrends beginnt, sich zu verflachen und umzukehren, wird die EMA-Rate der Änderung von einem Balken zum nächsten abnehmen, bis zu dem Zeitpunkt, zu dem die Indikatorlinie flacht und die Änderungsrate null ist. Wegen der nacheilenden Wirkung, von diesem Punkt, oder sogar ein paar Takte zuvor, sollte die Preisaktion bereits umgekehrt haben. Daraus folgt, dass die Beobachtung eines konsequenten Abschwächens der Veränderungsrate der EMA selbst als Indikator genutzt werden könnte, der das Dilemma, das durch den nacheilenden Effekt von gleitenden Durchschnittswerten verursacht wird, weiter beheben könnte. Gemeinsame Verwendung der EMA-EMAs werden häufig in Verbindung mit anderen Indikatoren verwendet, um signifikante Marktbewegungen zu bestätigen und deren Gültigkeit zu messen. Für Händler, die intraday und schnelllebigen Märkten handeln, ist die EMA mehr anwendbar. Häufig benutzen Händler EMAs, um eine Handel Bias zu bestimmen. Zum Beispiel, wenn eine EMA auf einer Tages-Chart zeigt einen starken Aufwärtstrend, eine Intraday-Trader-Strategie kann nur von der langen Seite auf einem Intraday-Diagramm zu handeln. Exponential Moving Average Exponentielle gleitende Durchschnittswerte sind als die zuverlässigsten der grundlegenden bewegen empfohlen Durchschnittlichen Typen. Sie liefern eine Gewichtung, wobei jeder vorangegangene Tag progressiv weniger Gewichtung erhält. Exponentielle Glättung vermeidet das Problem mit einfachen gleitenden Durchschnitten. Wo der Durchschnitt eine Tendenz zum Quotschen zweimal hat: einmal am Anfang der gleitenden Durchschnittsperiode und wieder in die entgegengesetzte Richtung am Ende der Periode. Exponentielle gleitende durchschnittliche Steigung ist auch einfacher zu bestimmen: die Steigung ist immer unten, wenn der Preis unter dem gleitenden Durchschnitt schliesst und immer oben, wenn der Preis höher ist. So berechnen Sie einen exponentiellen gleitenden Durchschnitt (EMA): Nehmen Sie den heutigen Preis mit einer EMA multipliziert. Fügen Sie dies zu gestern EMA multipliziert mit (1 - EMA). Wenn wir die frühere Tabelle neu berechnen, sehen wir, dass der exponentielle gleitende Durchschnitt einen weit glatteren Trend darstellt: EMA ist die Gewichtung, die an den aktuellen Tageswert angehängt ist: 50 würde für einen 3-tägigen exponentiellen gleitenden Durchschnitt verwendet werden 10 wird für einen Zeitraum von 19 Tagen verwendet Exponentiellen gleitenden Durchschnitt und 1 wird für einen 199 Tage exponentiellen gleitenden Durchschnitt verwendet. Um eine ausgewählte Zeitspanne in eine EMA umzuwandeln, verwenden Sie diese Formel: EMA 2 / (n 1) wobei n die Anzahl der Tage ist Beispiel: Die EMA für 5 Tage ist 2 / (5 Tage 1) 33.3 Unglaubliche Charts führt diese Berechnung automatisch durch, wenn Wählen Sie einen EMA-Zeitraum. Wie gut ist Ihre Marktanalyse Vergleichen Sie unsere Markt views. Calculate Historical Volatility mit EWMA Volatilität ist die am häufigsten verwendete Maß für das Risiko. Die Volatilität in diesem Sinne kann entweder eine historische Volatilität (eine aus früheren Daten beobachtete) oder eine Volatilität (beobachtet aus Marktpreisen von Finanzinstrumenten) sein. Die historische Volatilität kann auf drei Arten berechnet werden: Einfache Volatilität, exponentiell gewichtetes Wachstum Durchschnitt (EWMA) GARCH Einer der großen Vorteile von EWMA ist, dass es mehr Gewicht auf die jüngsten Erträge bei der Berechnung der Renditen gibt. In diesem Artikel werden wir untersuchen, wie die Volatilität mit EWMA berechnet wird. Wenn wir die Aktienkurse anschauen, können wir die täglichen logarithmischen Renditen unter Verwendung der Formel ln (P i / P i -1) berechnen, wobei P für P steht Jeder Tag schließt Aktienkurs. Wir müssen das natürliche Protokoll verwenden, weil wir die Renditen kontinuierlich erweitern wollen. Wir haben jetzt täglich Rücksendungen für die gesamte Preisreihe. Schritt 2: Platzieren Sie die Rückkehr Der nächste Schritt ist die nehmen das Quadrat der langen Rückkehr. Dies ist tatsächlich die Berechnung der einfachen Varianz oder der Volatilität, die durch die folgende Formel dargestellt wird: Hier steht u für die Rendite und m für die Anzahl der Tage. Schritt 3: Gewichte Zuweisen Gewichte zuweisen, so dass die jüngsten Renditen ein höheres Gewicht haben und ältere Renditen weniger Gewicht haben. Dazu benötigen wir einen Faktor Lambda (), eine Glättungskonstante oder einen persistenten Parameter. Die Gewichte werden als (1-) 0 zugewiesen. Lambda muss kleiner als 1 sein. Risikometrik verwendet Lambda 94. Das erste Gewicht ist (1-0,94) 6, das zweite Gewicht ist 60,94 5,64 und so weiter. In EWMA summieren sich alle Gewichte auf 1, jedoch sinken sie mit einem konstanten Verhältnis von. Schritt 4: Multiplizieren Rückkehr-quadriert mit den Gewichten Schritt 5: Nehmen Sie die Summe von R 2 w Dies ist die abschließende EWMA-Varianz. Die Volatilität ist die Quadratwurzel der Varianz. Der folgende Screenshot zeigt die Berechnungen. Das obige Beispiel, das wir gesehen haben, ist der von RiskMetrics beschriebene Ansatz. Die generalisierte Form von EWMA kann als die folgende rekursive Formel dargestellt werden: 1 Kommentar


No comments:

Post a Comment